Road Classification and Condition Determination Using Hyperspectral Imagery
نویسنده
چکیده
Hyperspectral data has remarkable capabilities for automatic identification and mapping of urban surface materials because of its high spectral resolution. It includes a wealth of information which facilitates an understanding of the ground material properties. For identification of road surface materials, information about their relation to hyperspectral sensor measurements is needed. In this study an approach for classification of road surface materials using hyperspectral data is developed. The condition of the road surface materials, in particular asphalt is also investigated. Hyperspectral data with 4m spatial resolution of the city of Ludwigsburg, Germany consisting of 125 bands (wavelength range of 0.4542μm to 2.4846 μm) is used. Different supervised classification methods such as spectral angle mapper are applied based on a spectral library established from field measurements and in-situ inspection. It is observed that using the spectral angle mapper approach with regions of interest is helpful for road surface material identification. Additionally, spectral features are tested using their spectral functions in order to achieve better classification results. Spectral functions such as mean and standard deviation are suitable for discriminating asphalt, concrete and gravel. Different asphalt conditions (good, intermediate and bad) are distinguished using the spectral functions such as mean and image ratio. The mean function gives reliable results. Automatisierte Liegenschaftskarte (ALK) vector data for roads is integrated in order to confine the analysis to roads. Reliable reference spectra are useful in evaluation of classification results for spectrally similar road surface materials. The classification results are assessed using orthophotos and field visits information.
منابع مشابه
Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کامل